A Khatri-Rao subspace approach to blind identification of mixtures of quasi-stationary sources

نویسندگان

  • Ka-Kit Lee
  • Wing-Kin Ma
  • Xiao Fu
  • Tsung-Han Chan
  • Chong-Yung Chi
چکیده

Blind identification (BID) of mixtures of quasi-stationary sources (QSS) is a vital approach for blind speech or audio source separation, and has attracted much interest for more than a decade. In general, BID-QSS is formulated, and then treated, under either the parallel factor analysis or joint diagonalization framework. This paper describes a Khatri–Rao (KR) subspace formulation of BID-QSS. Like subspace techniques founded in sensor array processing, the KR subspace formulation enables us to decompose the BID problem into a per-source decoupled BID problem. By exploring this new opportunity, we derive an overdetermined BID algorithm that solves BID-QSS in a successive and algebraically simple manner. Analysis shows that under an ideal data setting, the decoupled solutions of the proposed overdetermined BID algorithm yield very fast convergence. We also tackle the underdetermined case by proposing a two-stage strategy where the decoupled solutions are used to warm-start another BID algorithm. Simulation results show that the proposed BID algorithms yield competitive mean-square error and runtime performance in comparison to the state-of-the-arts in BID-QSS. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین جهت منابع با استفاده از زیرفضای ختری-رائو

This paper deals with Direction of Arrival (DOA) Estimation using Uniform linear array (ULA) for the case of more sources than sensors in the array processing. Khatri-Rao subspace approach, introduced for DOA estimation for this, in non-stationary signal model. The technique will be shown to be capable to handle stationary signals, too. Identifiability conditions of this approach are addressed....

متن کامل

Blind Source Separation of Audio Signals Using Wvd-kr Algorithm

Under-determined blind source separation aims to separate N non-stationary sources from M (M<N) mixtures. Paper presents a time-frequency approach (TF) to under-determined blind source separation of N non-stationary sources from M mixtures(M<N).It is based on Wigner-Ville distribution and Khatri-Rao product. Improved method involves a two step approach which involves the estimation of the mixin...

متن کامل

تخمین جهت منابع با استفاده از زیرفضای کرونکر

This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...

متن کامل

Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array

Quasi-stationary signals have been widely found in practical applications, which have time-varying second-order statistics while staying static within local time frames. In this paper, we develop a robust direction-of-arrival (DOA) estimation algorithm for quasi-stationary signals based on the Khatri-Rao (KR) subspace approach. A partly-calibrated array is considered, in which some of the senso...

متن کامل

Markovian blind separation of non-stationary temporally correlated sources

In a previous work, we developed a quasi-efficient maximum likelihood approach for blindly separating stationary, temporally correlated sources modeled by Markov processes. In this paper, we propose to extend this idea to separate mixtures of non-stationary sources. To handle non-stationarity, two methods based respectively on blocking and kernel smoothing are used to find parametric estimates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2013